A laboratory test of evolutionary aging theories

نویسندگان

  • Tatiana Iouk
  • Vladimir I. Titorenko
چکیده

high‐throughput chemical genetic screen of chemical compounds from several commercial libraries has revealed that lithocholic bile acid (LCA), and some other bile acids, can slow yeast chronological aging [1]. The robust geroprotective effect of exogenously added LCA is due to its ability to enter chronologically aging yeast cells, be sorted to both mitochondrial membranes and alter mitochondrial lipidome [2]. This elicits considerable changes in mitochondrial morphology and functionality, thus allowing mitochondria to operate as a signaling platform that institutes and maintains an aging-delaying pattern of the entire cell [3]. LCA and other bile acids are mildly toxic molecules that cause a so-called ″hormetic″ stress response in animals; because bile acids elicit chemical hormesis, they act as endobiotic geroprotective regulators that can delay the onset and slow the progression of animal aging [4]. Yeast cells do not synthesize LCA and other bile acids found in animals [5]. To explain how these natural molecules can delay yeast chronological aging, we proposed a hypothesis of the hormetic selective forces driving the evolution of longevity regulation mechanisms within ecosystems [5]. This hypothesis posits that after animals inhabiting an ecosystem release bile acids into the environment, these mildly toxic chemicals may create hormetic selective force that drives the evolution of certain protective mechanisms in yeast within this ecosystem. These mechanisms protect yeast against bile acid-induced cellular damage [5]. Our hypothesis further suggests that some of these mechanisms of protection against broad cellular damage elicited by bile acids can also protect yeast against damage and stress accumulated purely with age. Therefore, those yeast species that have developed such longevity regulation mechanisms are expected to live longer [5]. As a laboratory test of this hypothesis, we recently conducted a multistep selection of long-lived yeast species by a lasting exposure of yeast cells to different concentrations of exogenously added LCA [6]. This test yielded twenty long-lived yeast mutants, three of which were capable of maintaining their considerably prolonged chronological lifespans after numerous passages in medium without LCA [6]. Our genetic analyses have revealed that the extended longevity of each of the three selected long-lived yeast mutants was a polygenic genetic trait caused by mutations in more Editorial than two nuclear genes [6]. In further support of the hypothesis on hormetic selective forces driving the ecosystemic evolution of longevity regulation mechanisms, none of the yeast cells that were not exposed to exogenous bile acids had chronological lifespan above a …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review of Mechanisms and Theories of Aging

Several factors have incentive role for study of aging which includes increasing of the average and maximum of human life span, the increase in percentage of elderly in the societies and proportion of the national expenditure utilized by them. The Recent views of aging indicating that aging is extremely a complex multifactorial process despite of earlier views about definite cause aging like ge...

متن کامل

Evolutionary theories of aging and longevity.

The purpose of this article is to provide students and researchers entering the field of aging studies with an introduction to the evolutionary theories of aging, as well as to orient them in the abundant modern scientific literature on evolutionary gerontology. The following three major evolutionary theories of aging are discussed: 1) the theory of programmed death suggested by August Weismann...

متن کامل

Evolutionary theories of aging. 1. The need to understand the process of natural selection.

BACKGROUND In a Forum article Le Bourg (1998) criticized recent tests of evolutionary theories of aging and suggested alternative explanations for the long lifespan of ant queens and the positive relationship between body size and lifespan in mammals. Moreover, he attempts to criticize evolutionary theories of aging by showing that explanations other than evolutionary theories of aging probably...

متن کامل

Empirical verification of evolutionary theories of aging

We recently selected 3 long-lived mutant strains of Saccharomyces cerevisiae by a lasting exposure to exogenous lithocholic acid. Each mutant strain can maintain the extended chronological lifespan after numerous passages in medium without lithocholic acid. In this study, we used these long-lived yeast mutants for empirical verification of evolutionary theories of aging. We provide evidence tha...

متن کامل

Testing evolutionary theories of aging in wild populations.

Classic theories for the evolution of senescence predict that rates of aging should be highest in populations in which extrinsic mortality is high. This predication is called into question in new work by David Reznick and co-workers, who found that guppies Poecilia reticulata derived from natural populations with high levels of predation live the longest in the laboratory. This study illustrate...

متن کامل

تئوری‌های بیوشیمیایی و ژنتیکی فرایند پیری

Aging is the outcome of the progressive accumulation of different alterations in the body which accompanied with gradual decrease of the efficiencies of normal physiological functions and the capacity to maintain homeostasis that lead to the increase in disease probability and the death of people. The researchers have done different experiments especially on animal models for the perception of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017